Defocus Incorporated Multiple Segments (DIMS) Spectacle Lens Use Enhances Pupil Dynamic Range in Myopic Children

Patricia Domsa^{1,2}, Attila Törcsvári³, Judit Körtvélyes^{1,4}, Gergely Szedő^{5,6}, Tamás Andorfi⁷, Éva M. Bankó⁸

¹Non Plus Ultra Vision Centre, Budapest, Hungary; ² Department of Ophthalmology, University of Pécs Medical School, Pécs, Hungary; ³ Arcanum Development Ltd, Budapest, Hungary; ⁵ Focus Medical — Laser Vision Correction Center, Budapest, Hungary; ⁵ Heim Pál National Pediatric Institute, Budapest, Hungary; ⁵ Focus Medical — Laser Vision Correction Center, Budapest, Hungary; ⁶ South-Pest Hospital Centre — National Institute for Infectology and Haematology, Budapest, Hungary; ⁷ Semmelweis University Doctoral College, Health Sciences Division Publical Sciences, Budapest, Hungary

C13

Purpose

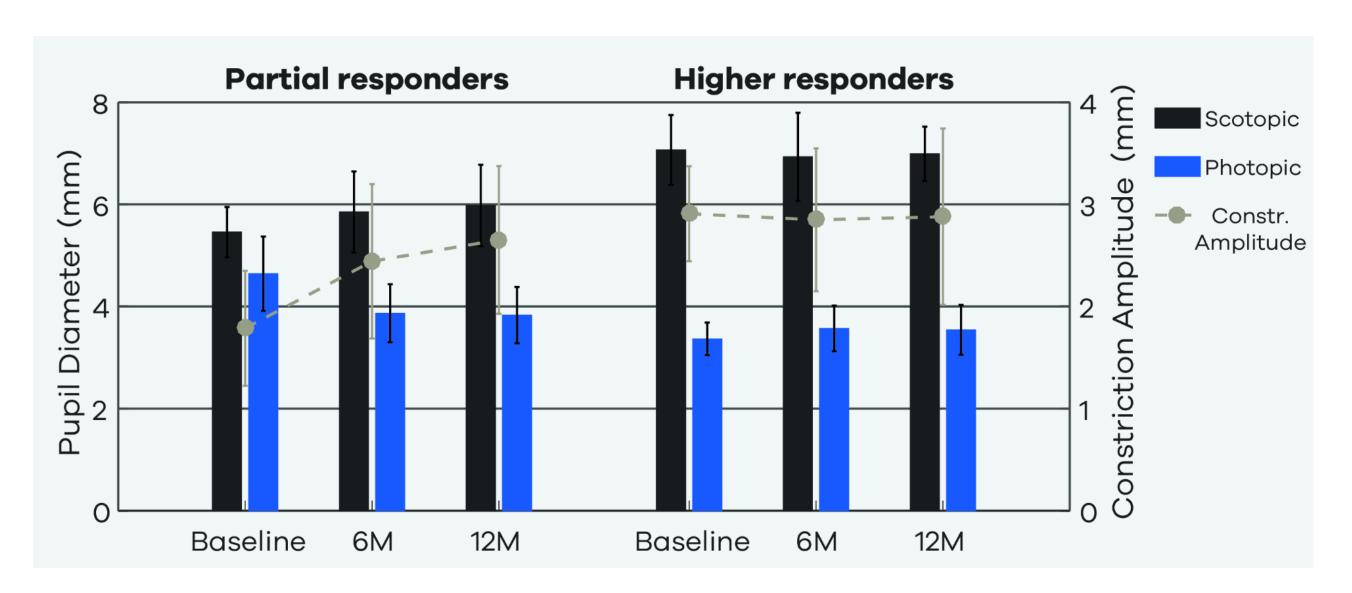
Banko.eva@ttk.hu

- Defocus Incorporated Multiple Segments (DIMS) spectacle lenses have proven efficacy controlling myopia progression, but the precise elements of the myopic defocus effect are still unclear.
- This study investigates the effect of DIMS spectacle lenses on resting (scotopic) and daytime (photopic) pupil diameters and their potential link to myopia progression in a Hungarian pediatric cohort.

Methods

- Retrospective, interventional, non-randomized study
- Participant characteristics:
- 57 progressive myopic patients recruited from a private clinic
- Age 4–23 y (mean±SD: 10.60±3.09)
- Spherical Equivalent Refraction (SER): -1.00 to -10.00D (-3.68±1.78)
- Astigmatism up to -1.75DC
- No ocular pathology
- All participants were prescribed DIMS spectacle lenses
- Static pupillometry was measured under *scotopic* and *photopic* conditions using Topcon Myah topographer (Topcon, Tokyo, Japan).
- Key outcome measures:
 - Cycloplegic SER
 - Axial length (AL) (both published in¹),
 - Average pupil diameter under different lighting conditions
 - Pupil constriction amplitude at baseline, 6M and 12M

Analysis


- Participants' left eyes (always measured after the right) were analyzed to standardize light exposure before pupillometry
- Participants were divided into subgroups based on:
 - Baseline pupil diameter (partial vs. higher responders)
 - Constriction amplitude (below vs. above average responders)
 - SER increase (progressors: ≥0.50 D/year vs. non-progressors)
- Repeated measures ANOVA was used to analyze pupil changes with 'Time' as within-subject, and 'Responders' (partial/higher), and 'Progression' (progressors/non-progressors) as between-subject factors and their interaction terms
- Multiple regression analysis was performed to determine factors related to the degree of AL progression

Acknowledgements

The authors would like to express their gratitude to Fanni Füge, Zsuzsanna Gulyás-Mónus, Boglárka Nagy, and Krisztián Szabó for their dedicated assistance in data collection and documentation and HOYA Vision Care for their financial support for presenting their work.

Results

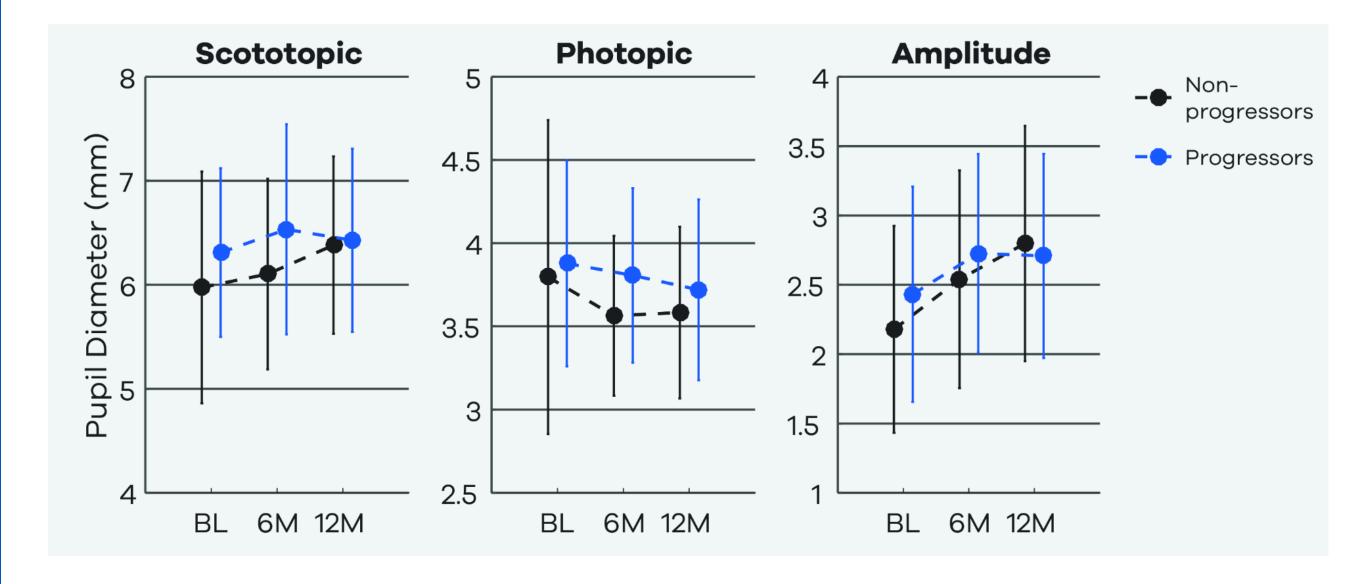

Pupil Size Standardization

Figure 1. Average change over time in pupil diameter and constriction amplitude in the partial and high responders' subgroups separately. N=57, error bars: ±SD.

- Photopic pupil diameter decreased, while scotopic pupil diameter increased overall during DIMS treatment resulting in increased pupil constriction amplitudes already at 6M
- Differences across responders' subgroups (Figure 1):
 - **Photopic** diameter **decreased significantly** in **partial responders** (higher initial diameter), and remained consistently small in higher responders (Time × Responders: p<0.0001)
 - Scotopic pupil diameter increase was also only significant in partial responders (smaller initial diameter), and remained consistently large in higher responders (Time × Responders: p=0.002)
 - Constriction amplitude increase was significantly observable in below-average responders, almost reaching the amplitude values of above-average responders, whose amplitude remained large (Time × Responders: p=0.0002)

Pupil Size vs. Progression

Figure 2. Average change over time in pupil diameter and constriction amplitude in non-progressors vs. progressors based on SER change at 12M. N=57, error bars denote ±SD.

Results continued

- Differences across progression subgroups (based on SER change at 12M, **Figure 2**):
 - Photopic decrease was significantly more pronounced in nonprogressors compared with progressors (Time × Prog: p=0.022)
 - **Non-progressors** tended to have **larger scotopic increase**, but the between-group difference did not reach significance (Time \times Progression: p=0.081)
 - Change in amplitude was not different across progression groups (Time × Progression: p=0.41)
- Mean AL elongation was 0.06±0.09mm and 0.14±0.13mm at 6M and 12M, respectively
- Multiple regression analysis:
 - The amount of AL progression was significantly related to pupil constriction amplitude (both baseline and change) at 6M (baseline: p=0.011 and change: p=0.003) but not at 12M.
 - This is in line with pupil diameter changes predominantly taking place by 6M

Conclusions

- DIMS spectacle lenses induce rapid changes in pupil size, contributing to standardization under given luminance conditions, simultaneously enhancing the pupils' dynamic range.
- Changes in constriction amplitude appear to be related to AL progression but not to SER change
- Absolute constriction amplitude (ACA), a similar measure, predominantly reflects parasympathetic activity, and has been shown to be decreased in moderate to high autonomic nervous system dysfunctions² as well as in myopia.³
- Further research is needed to explore the causal relationship of these changes and how they may be linked to the effectiveness of DIMS spectacle lenses.

References

- 1. Domsa P, Bankó ÉM, Körtvélyes J, et al. Astigmatism and maternal myopia as important factors affecting success rate of DIMS lens treatment. *BMJ Open Ophthalmol*. 2024;9:e001499.
- 2. Muppidi S, Adams-Huet B, Tajzoy E, et al. Dynamic pupillometry as an autonomic testing tool. *Clin Auton Res Off J Clin Auton Res Soc*. 2013;23:297–303.
- 3. Poudel S, Jin J, Rahimi-Nasrabadi H, et al. Contrast Sensitivity of ON and OFF Human Retinal Pathways in Myopia. *J Neurosci* . 2024; 44(3):e1487232023.

